東アフリカの食生活

豆類の利用について

大 井 嘉 子

Ⅰ はじめに

FAOの『食糧供給量の国際比較』より、国民所得の増加にもとづいて、肉、油脂、乳製品、果実、砂糖、卵等の食糧供給量は増加し、逆に、穀類、イモ等は減少する傾向にある。ところが、魚類、豆、野菜については相関関係は見られない。同じような傾向が、1980年から1994年の15年間の日本の食品群別供給量の年次推移に於いても見られる。

一般的に、魚貝類や大豆の嗜好は、地域による特徴性が大きいと言われている。特に、豆は調理加工方法の良否が食生活の利用推移になっていると言う。「総合嗜好調査」の結果、大豆や豚豆等の豆類の嗜好順位は他の野菜に比べて低いが、豆莢や味噌の順位は大変高いという結果がそれと示されている。

豊川は、国民栄養調査の分析結果から、食品群別摂取量の相関関係を見た時に、米と正相関を示するのは魚介類、豆、淡色野菜等であったと述べている。また、日本人の食生活決定因子のうち、第一因子は経済的因子で、第二因子は伝統的因子であったと言う。米の摂取そのものは減少しているものの、米類の摂取度数は増加する傾向に変わり、習慣化のものとして好まれている。

このように、米、魚類、豆、淡色野菜は日本人の伝統的食生活を構成している食品群であることがわかる。そして、これらは食物の摂取は栄養学的にも重要で、肉類の摂取が少ないのも特徴で、合同による国と比較してみても、最も優れた一つの食構成に近づいていている、と考えられる程になっている。

一方、本稿の対象の東アフリカに於ても、豆は穀類と共に伝統的食生活を構成してきた重要な食品である。動物性蛋白質の摂取が少ない地域では、豆は蛋白質の重要給源となり、穀類との適当な組合せによって、健康を保持する必要なカロリーを供給することができる。本稿では、東アフリカに見られる種々の豆と穀類の料理について述べ、加えて、栄養学的見地から大豆の利用についても言及したい。

なお、本稿で述べる東アフリカとは、資料入手の関係上、おもにケニア共和国、タンザニア連合共和国の両国を指している事をここで断わっておかねばならない。通常、狭義の東アフリカとは、ケニア、ウガンダ、タンザニアを指して言う事が多い。これら三ヶ国は、1977年にその機能が事実上解体する迄、東アフリカ共同体を結び、種々の相互関係を保っていた。さらに、共通語や宗教をはじめ、伝統的な料理を含めて、文化を構成する種々の要素が非常に類似しているのが大きな特徴である。しかし、上記的理由によって、本稿では、主にケニア、タンザニアについて述べる事とした。なお、用語は出来るだけスワヒリ語（Swahili）を用い、その英語訳を括弧内に付けた。

Ⅱ 東アフリカの食生活

ケニアやタンザニア人の食生活を詳細に書き表わすとすれば、両国の人々を数多くのグループに分けて考察しなければならない。そのグループ分けには、例えば、kabila（ethnic group）や生業による分け方の他に、居住環境、例えば、海岸、湖岸、森林、サバンナ等に住む人々のグループ分けや、都市と農村、経済的差、宗教、老若男女など、他の分け方を含め含め、多彩でしかも複雑な分けが要となる。日本のように、少数の民族から構成され、しかも、地名の名を以て表す地域とは特異にない程の複雑さを呈している。上記のグループ分けのうち、kabila別の人々の食生活に関しては、民族誌的報告に於いて、それぞれを引用文献の欄に記した。

しかし、人々の社会や文化規制は、種々の要因によって徐々にあるいは急速に変動しており、kabilaによる分け方は次より、その他のグループ分けと大略同じ変動していると言われる。従って、栄養に関する資料からの食生活的概要方法にとっては、特別な場合を除いては、ケニア人の、タンザニア人のといった総括的な表現の方はむしろ将来を指向する意味で好ましいかもしれない。以下は上記のような観点から書いたものである。
1. 主食を構成する食品群
東アフリカでも、日本と同様に、御飯を含まず、に類似した組合わせが一般的になっている。日本では長い間、御飯に相当するものを主食と呼び、摂取カロリーの多くをそれに依存してきた。他方、かず面に相当するものを副食と呼び、その質や量はそれぞれの環境や経済、あるいは食習や習慣等の理由によって大きく異なっていた。同じ事が東アフリカについても言える。カロリーは主食で摂取されていて、タンパクでは約70%の熱量機能比を示している（日本は約50%）。

主食は二つに分けて、すなわち、mahindi（maize）、mtama（sorghum）、wimbi（finger millet）、mchele（rice）、ngano（wheat）、uwele（bulrush millet）等の穀類、もしくはcassava、kizai（sweet potato）、kiazi ulaya（irish potato）、kizai kikuu（yam）等の根菜類との他に、ndizi mbichi（green banana、plantain）を加えて構成される。④ ①に、あるいは数種類組み合わせて利用されている。これらのうちで、根菜類やバナナがそのまま煮たり蒸したりおで揚げたりされる頻度が高いのを除けば、粉にして用いる事が多い。その利点はいくつか考えられるが、最も大なもの、消化率を高めると共に、調理時間が短縮化できることにある。穀粉を準備するには少々時間を要するが、一度準備して乾燥状態で保存をしておけば、何時でも使えることができる。市販品を用いることとし、なお時間を短縮させる事ができる。

上記の穀類の栄養素含量は殆ど同じであり、100g当たり350カロリーの熱量、10gの蛋白質、1.5gの脂質、20mgのCa、2mgのFeの他にBビタミン等を含んでいる。しかし、粉を加工する時に、蛋白質やBビタミン等は少々失われる。Table 1. は、トウモロコシの外皮や胚芽を取り除いて得た穀粉・sembeと全粒とを比較したものである。トウモロコシは、リチンやトリプトファンの含量が他の穀類と比べて低い事がよく知られているが、穀粉加工によって蛋白質やリチン酸が一段と減少すると共に、これは大きな問題と言える。なぜなら、トウモロコシは前述の穀粉の中でも特によく利用されているからである。従って、市販品にはBビタミンが添加されるようになってきつつあるが、自家精粉の場合は減少したままで利用される事になるので、複数の穀粉を組み合わせて主食を構成するのが望ましい事になる。もちろん、一方では、上記の穀類について、蛋白質を増加させる等の品種改良が進められている。⑦

2. 主食料理
最も一般的な主食料理はugali（sima）（stiff porridge）と uji（thin porridge）である。材料の粉は地域や習慣、嗜好によって異なるが、いずれも、単一又は数種類を組み合わせて作る。uji は主として朝食に、ugali は昼、夕食に用いる。ugaliの場合、穀粉や作り方の違いによって出来具合、例えば、堅さや香ばしさ等が微妙に異なっていて、言わば、その土地の味わくのある味となる。よって、標準的な作り方というのとは無いが、基本的には共通している。⑩⑪⑫⑬ あらかじめ少量の水で溶いた粉を沸騰剤に入れるか、あるいは、沸騰剤の中に粉を徐々に加えてかき混ぜながら十分に加熱をして、大きな団子状に固める。この時の加熱の程度によって消化率に種々変化すると考えられるが、その報告の有無を知らない。いずれかき混ぜてみたいテーマの一つである。

ugaliやujiの他に、料理用バナナを煮てつぶしたmatoke⑭や米飯が用いられるほかに、非穀類パンの一種であるchapatiもよく利用されている。チャパティの作り方には変化⑮⑯が見られ、ghee（butter oil）やcorn oilを比較的多く使う場合とそうでない場合などがある。

3. 主食に対する副食
前述の主食は副食と一緒に供される。副食の中でよく用いられるのはmboga（vegetables, stew）やmchuzi（soup）等のシチューやスープ類で、⑮⑯⑰⑱ 数種類の野菜に動物性食品等を加えて作られる。用いられる野菜の種類は実に多い。例えば、mchicha（spinach）、kisamvu（cassava leaves）等の緑葉、

| Table 1. Influence of milling process on several nutritive values.⑮ |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | protein g | thiamine mg | riboflavin mg | nicotinic acid mg |
| whole maize | 10 | 0.35 | 0.13 | 2.0 |
| sembe (maize flour) | 8 | 0.05 | 0.03 | 0.6 |

— 51 —
kitungu (onion), karot (carrot) 等の根、nyanya (tomato), bilingani (egg plant) 等の実、あるいは cauliflowers 等が用いられる。mboga はこれらの野菜をベースとして作られるが、材料によって作り方は多少異なる。しかし、基本的には、油を用いた野菜類をよくと煮て作る。この時に加える水やミルクの量にゆとりをゆるやかにシュー状になったり、スープ状になったりする。mboga の材料は、上記のような野菜の他に、肉、魚、卵、ミルク、豆や穀実、穀類など、何でも入れる事が出来る。

従って、mboga は mchanganyiko (mixture) のシュー状料理を総称していると言える。例えば、日本で「今晩のおかずは鶏肉」と言う時に、副菜の中の肉が鶏肉である事を指しているのと同じように、mboga yaku (chicken stew) と言っても、鶏肉だけが入っているのではなく、トマトとタマネギや他の野菜が入っていて、あくまで主材料（量が問題ではない、いくら価値感があると考えられるか）を指しているにすぎない。従って、mboga はおかずを総称しているわけで、用いる材料や料理方法によって個別の名前が付けられていることが多い。

このように、ugali と mboga は、日本の御飯とおかずに相当している。しかも、ugali と mboga は別々の器に供される。食べ方は、左手の指で ugali を取り別の器に入れた mboga に浸して食べる。もし、ugali と mboga を一つの器に盛った時にはもはや ugali と mboga とは言わずに、mseto と言う料理名になる。丁度、親子丼やに戦豆と同じ関係で、御飯とおかずの関係から別の一品料理に変身する。従って、親子丼はまさしく mseto であり、また、赤飯やかやく御飯も mseto の一種であると言える。

ugali だけの食事で必要なカリウムや栄養素を得ようとするとき、ugali の摂取量をむやみに多くしなければならず少し無理である。よって、ugali と mboga の組み合わせでは、糖質以外の栄養素の摂取は mboga に用いられる食品の質と量に依存していると言われて言えずらしい。多くの方を使った mboga ほど、栄養学的に優れたものになる可能性が強い。

4. 三つの食品群

ケニア、タンザニアでは、政府の政策の一環11,15 として home economistsや nutrition field workers を動員して、健康な体を作る為の栄養指導が行なわれている16,17,18,19。食品は三つのグループに分けて利用している。第一グループはミルク、卵、魚肉、豆、穀実等の body-building foods で、第二は野菜、果実等の protective foods。そして、第三は穀類、イモ、油脂、砂糖等の heat and energy giving foods となっている。良い食事とは、少なくとも三つのグループから構成されていないければならないと指導されている。

ugali と mboga の食事の質の良否は、取りも直さず、一と二のグループがいかに含有されるかに委ねられている。ケニア、カンザニアの洞国が農業国であるからと言って、第二グループが常に満足のいく状態で供給されているとは限らない。農村では主婦が自家野菜を作る事が出来るし、又、出来るだけ多種類の野菜を作るように指導16が行なわれている。しかし、急激に人口が増加している都市部では、給食量と需要量との調整や流通機構の問題等、他の国々と同様に様々な問題を抱えている。乾期では野菜が育ちにくい為に価格が高く高くなる。従って、大規模な野菜の長期貯蔵の開発が待たれる一方で、消費者は旬を利用して手土産買い方をしなくてはいけない11,18,19と述べられてている。とは言うものの、第二グループの摂取は比較的容易である。問題は第一グループにある。なぜなら、経済的理由をはじめとして、宗教や習慣、伝統、地理的条件、タブー等が魚肉類の摂取に強い影響を与えているからである。イスラム教徒が豚肉を、ヒンドゥー教徒が牛肉を食べない事はよく知られているが、一般的に、日本の牛肉はほどほどとも感じて決してその価格は相対的に安いかと言えない。肉以外にも、特定の地域の人達はあまり魚を卵食べなかったり、食べたとしても乾燥魚のみであり、生まれた土地の環境がその後の習慣に強く影響している場合がある。食物に関するこれらの影響はすぐに消す事は出来ないが、教育によって、あるいは、新しい環境で新しい食習慣を身につける事によって、徐々に消費行く事が出来るだろう19と指導書は述べている。何よりも大事なことは、まず主婦が積極的に穀実の材料を使って作ると、今後も持つующ事であろう。なぜなら、その子供達はその時から新しい食習慣を身につける事が出来るからである。

このように、魚肉類の摂取には色々な要因が影響するのに比べて、第一グループの中で殆ど影響を受けないのは豆や穀実類であろう。日本人にとって大豆無しの生活が考えられないのと同じ様に、穀類の豆類が非常に重要である事がわかる。

5. 豆類の利用

完熟豆を消化よく調理するには時間要する。この為に、豆をよく利用する人々の間では、独特の調理加工方法が発達して来た。例えば、日本や中国の大豆加工をはじめとして、インド、東南アジア、南米等
でもそれぞれ工夫を凝らした豆の加工方法を29-31と見られる。日本人にとって大豆があまりにも重要である豆と言えば大豆を指す程で、現在では他の豆の利用についてもますます一般消費者の関心が広がってきている。そこで、ケニア、タンザニアでは、アフリカの他の国々と同様に大豆を比較的遅く入ってきた豆で、主として牧畜作物としても作られており、その利用は比較的新しいものである。29-32 従って、まだ大豆の占める位置は肉程高くなく、これから利用が期待される食品の一つである。

ケニアやタンザニアで利用されている豆は、kunde (cow pea), choroko (green gram), fiwi (lima bean), maharagwe (common bean), njegere (green pea), mbaazi (pigeon pea), dengu (lentil), njahi (Kikuyu word, lablab bean), kidney bean, soya (soy bean), bambara (bambara nut), karanga (ground nut) 等である。Fig. 1 にその内の一部を掲げている。これらは、乾燥豆の他、果実類や葉でも野菜として利用される。渋実類では、nazi (coco nut), korosho (cashew nut), simsim (sesame), boga (pumpkin), sunflower 等がよく利用される。

上記の豆や穀実は保存が一度と、脂肪や蛋白が食品としては最も低価で、そのうえ、Table 231 に示すように栄養素も豊富で、必須アミノ酸の不足分は、ugali や uji に含まれる穀類で補正される。この関係は、日本の米と大豆製品の関係に似ているが、酵素の利用に関連する、日本食の栄養バランスで言えば、米のままで、あるいは粉にして用いる。uji や ugali の上、mboga やその他の料理に用いるので、その料理数は数えきれない程に多い。また、肉類に不足した時には豆類を使うように指導がおこなわれている。

6. One pot dishes

ケニア、タンザニアの食生活の根拠となっている穀類と豆類の利用について述べてきたが、ここでは、両者を組み合わせた主食料理について述べることにする。例えば、mboga ya maharagwe と ugalı とを一皿に盛れば mseto と言うと述べたが、豆を使った mseto の数は非常に多い。米と njegere を煮て作った mseto はまずやく豆料理である。

穀類、イモ類、バナナ、豆類やその他の野菜を使っている主食料理の数は多い。例えば、mseto (rice and grams), kandri (dry maize and dry beans), engitaloilo (maize, beans and vegetables), kimburu (green bananas and beans), irio (maize, beans, vegetables and potatoes), muthura (sorghum, beans and green bananas), nyoyo (maize and beans, peas or ground nut), pure (maize, beans and vegetables) 等、(beans or peas and green bananas) 使用した matoke 料理、(potatoes and beans),(bananas and beans) 等から出来上がめん yanyi らの料理29-30,31,32 がそれぞれ一つ、one pot dishes として作っているところがよく利用されている。上記の料理の一部は、同じ材料を用いて少し軟かく料理してイエス教のRamsadan 時の食事・futari として用いる。いずれも第三グループの食品をベースとして、これに第一、第二グループを加えているので、量や質を適宜に選択すればカロリー摂取が増えると同時に摂取できる。しかし、この中には第二グループに欠ける物もあるので、果実や野菜を一緒に食べることが必要である。

タンザニアのkande31とケニア・Kikuyu 人のirio32 の作り方を Table 3 にそのまま引用した。実際には、他の野菜や肉が加えられる事が多いし、両方とも収穫期を除いては dry maize と dry beans で作られる事が多い。しかし、大都市のホテル等では、主として外国人の為に green を用いて軟らかく作る事
Table 2. Nutritive values of some of the most common pulses, nuts and seeds.²⁷)

<table>
<thead>
<tr>
<th>100g foods</th>
<th>cal</th>
<th>protein g</th>
<th>fat g</th>
<th>CHO g</th>
<th>Ca mg</th>
<th>iron mg</th>
<th>V. A IU</th>
<th>V. B₁ mg</th>
<th>V. B₂ mg</th>
<th>niacin mg</th>
<th>V. C mg</th>
<th>chemical score</th>
<th>limiting amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>cow peas</td>
<td>310</td>
<td>22</td>
<td>1.5</td>
<td>60</td>
<td>90</td>
<td>5.0</td>
<td>20</td>
<td>0.9</td>
<td>0.15</td>
<td>2.0</td>
<td>*</td>
<td>57</td>
<td>41, 58</td>
</tr>
<tr>
<td>kidney beans</td>
<td>339</td>
<td>24</td>
<td>1.7</td>
<td>57</td>
<td>110</td>
<td>8.0</td>
<td>*</td>
<td>0.5</td>
<td>0.2</td>
<td>2.0</td>
<td>*</td>
<td>47</td>
<td>34, 63</td>
</tr>
<tr>
<td>pigeon peas</td>
<td>328</td>
<td>20</td>
<td>2.0</td>
<td>58</td>
<td>100</td>
<td>5.0</td>
<td>50</td>
<td>0.5</td>
<td>0.15</td>
<td>2.3</td>
<td>*</td>
<td>39</td>
<td>27, 35</td>
</tr>
<tr>
<td>soya beans</td>
<td>382</td>
<td>35</td>
<td>18.0</td>
<td>20</td>
<td>200</td>
<td>7.0</td>
<td>*</td>
<td>1.1</td>
<td>0.3</td>
<td>2.0</td>
<td>*</td>
<td>62</td>
<td>47, 66</td>
</tr>
<tr>
<td>bambara nuts</td>
<td>367</td>
<td>18</td>
<td>6.0</td>
<td>60</td>
<td>65</td>
<td>6.0</td>
<td>*</td>
<td>0.3</td>
<td>0.1</td>
<td>2.0</td>
<td>*</td>
<td>65</td>
<td>51, 66</td>
</tr>
<tr>
<td>ground nuts</td>
<td>567</td>
<td>27</td>
<td>45.0</td>
<td>17</td>
<td>50</td>
<td>2.5</td>
<td>*</td>
<td>0.9</td>
<td>0.15</td>
<td>17.0</td>
<td>*</td>
<td>69</td>
<td>43, 51</td>
</tr>
<tr>
<td>cashew nuts</td>
<td>590</td>
<td>20</td>
<td>45.0</td>
<td>26</td>
<td>50</td>
<td>5.0</td>
<td>*</td>
<td>0.6</td>
<td>0.2</td>
<td>2.1</td>
<td>*</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>coconuts</td>
<td>375</td>
<td>4</td>
<td>35.0</td>
<td>11</td>
<td>10</td>
<td>2.0</td>
<td>*</td>
<td>0.05</td>
<td>0.02</td>
<td>0.6</td>
<td>*</td>
<td>82</td>
<td>55, 57</td>
</tr>
<tr>
<td>pumpkin seeds</td>
<td>610</td>
<td>30</td>
<td>50.0</td>
<td>10</td>
<td>40</td>
<td>10.0</td>
<td>30</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>sesame seeds</td>
<td>592</td>
<td>20</td>
<td>50.0</td>
<td>16</td>
<td>1500</td>
<td>10.0</td>
<td>20</td>
<td>1.0</td>
<td>0.25</td>
<td>5.0</td>
<td>*</td>
<td>63</td>
<td>42, 54</td>
</tr>
<tr>
<td>sunflower seeds</td>
<td>524</td>
<td>27</td>
<td>36.0</td>
<td>23</td>
<td>100</td>
<td>7.0</td>
<td>*</td>
<td>1.9</td>
<td>0.2</td>
<td>5.8</td>
<td>—</td>
<td>93</td>
<td>56, 61</td>
</tr>
</tbody>
</table>

*: trace
225g shelled green maize
1kg green beans or peas
1kg potatoes
2 or 3 bunches of green pumpkin leaves
Salt

1. Boil maize and beans until soft.
2. Add potatoes and green leaves.
3. Boil until potatoes are cooked.
4. Drain, and salt and mash.
Serves 4

2 cups dry crushed maize
2 cups beans
Salt

1. Clean and wash the beans and soak them overnight.
2. Boil the beans in the same water for 30 minutes.
3. Clean and wash the maize and soak for a while.
4. Then add it to the beans and boil until both are cooked.
5. Add salt
Serve the Kande with a tomato salad.
Serves 4

が多くなっている Kikuyu 社会では、ミルクと Irio 料理とで食事の構成されている事が多いが、栄養学的にも経済的にも非常に優れていると言える。引用した指導書にも、栄養学上望ましいと思われる種々の応用例が付記されている。

上記の伝統的な one pot dishes の利点と言うのは、料理用の火が一つしか必要でないという事の他に、食品材料の選択の余地が有るという点である。これこそ、土地柄や作る人の個性が反映するもので、その変化の可能性は大きく、ひいては家庭の味になる。魚肉類や卵、ミルク等を入れて作ると、栄養素摂取や味の点からすばらしい料理となる。

7. 全脂大豆粉の利用

東アフリカでは、日常の食事に豆がよく利用されていることがわかる。ところが、Table 2 でわかるように、豆類の中で平均的に栄養素量が多いのは大豆で、しかも、蛋白正味利用率（NPU）が高い。

最近、タンザニアでは、政府の方針によって各地の ujamaa (famililhood) 村で大豆を作るように奨励され、全脂大豆粉が販売される迄になってきている。大豆は病んで生のまま食べる事が出来ないうえに、単に粉にしただけでは、プロテアーゼ阻害因子やヘマグロビンを始めとして、種々の生理活性物質の為に人体に悪影響を与える。従って、それらを除去するかは生産される操作が必要になる。

UNICEF がタンザニアで指導した湿式加工技術の要点を Table 4 に示した。sembe や小麦粉の一部を得られた全脂大豆粉で置き換え、ugali, uji, chapati や maandazi (fried cake, doughnut) を作るように指導している。その置き換え率は、maandazi の 25％を除いて、すべて 10％以下である。というのでは、揚げ菓子類では全脂大豆粉はプラスの働きをするからである。

Table 4. Preparation of full fat soy bean flour (pre-cooked)

1. Weka katika maji (masaa 4-6).
4. Twanga mbeu.
5. Pepeta maganda.
7. Hifadhi unga.

(Soak into water, 4-6 hours.)
(Boil with water for 10-15 minutes.)
(Dry in air.)
(Pound in order to get off husks.)
(Separate husks.)
(Grind to fine flour.)
(Preserve flour.)
それゆえ、およそ60、75、100、70、120、75、600％増加する。
大豆粉置き換えの重要性は、穀物の種類によって異なるが、いずれにしても豆蛋白質摂取の観点から非常に望ましい。
一方、ナイスジェリのT.Kayらは、12時間の水浸漬、40分間の蒸煮加熱で全脂大豆粉を得ている。
この蒸煮加熱の最短時間は15分であると述べている。
そして、等量のキャッサバ粉と大豆粉で作ったケンでも元の外観や味や触感を何も損じなかったと述べている。
筆者はUNICEF方式とKay方式で全脂大豆粉を得たが、臭いや味の上で両者の間に殆ど差のない着色を確かめた。Table 5は、Kay方式で得た大豆粉と生大豆粉、粒状植物性蛋白（Bontrae C）との栄養素の比較分析結果である。表中のNSIは可溶性窒素の量を表し、すなわち、大豆粉製品の著・不適と有効性の判断に用いられる。35,36得た全脂大豆粉を、チャバティ、パン、ハンバーグの小委員会とおき換え、試作した結果、それぞれ、25％、10％、30％おき換えても色と臭い味に殆ど影響を受けていなかった。37,38但し、添加水を増加させたり、パンではあらかじめ大豆粉のみでドウを作るなどの工夫が必要である。C.C.Tsenら39,40は、パンを6％以上おき換える時は、SSLやCSLの添加物を必要とすると述べているが、家庭や小地域で利用するには、水の量に注意させば十分満足に作る事が出来る。
アメリカの脱脂大豆利用に端を発した大豆蛋白質の開発は、今や、種々の肉類似食品や乳製品類似食品あるいは焙煎製品の市販化を実現させている。9,39,40吉川らの「食品の需要予測のためのイノベーション調査」、さらには稲穂種実験場が動植物蛋白食品のと類似している事がわかる。日本人には、精神的にも大豆は細胞の肉となっている。このような意識は、大豆蛋白食品の利用を一層押し進める力になるだろうと考えられている。もし、東アフリカの人々の豆に対する意識が日本人のと類似しているとすれば、大豆を含めた豆の一層の利用や乳製品の大豆ミルクだけではなく大豆蛋白食品の利用が人間に受け入れられる可能性は非常に大きくなるだろう。

Ⅱ食習慣について

内野や豊川は、食生活形成に影響を与える要因を、地理的、歴史的、社会的、経済的、都市化の影響の四つに分けている。この順について述べていくことにする。

気候や風土は変化をしないうえに、地域の生産物の量や種類を決定する要因が含まれている。ゆえに、地域の特殊性が食生活の特殊性を形成するようになる。例えば、東アフリカやインドで、豆類の品種改良と食生活への利用が密接な関係を保ちながら発展してきた事実がある。又、大豆は、東アジアで広く利用されていても拘らず、東アフリカには影響力を持っていなかったので品質である。このような長い歴史を背景に食生活は、少々の力では影響を受けにくく、非常に強力な指導や社会的条件の緊急な変化をもなければ急速に変化しない。例えば、ナイスジェリのように、極端な肉不足の下でこそ、はたして、大田を伝統的な食事の中に導入する政策が考えられるようになる。新しい食品を食生活へ導入するには二通りの方法がある。そのうちで伝統的料理の同化させていく方法はある意味で困難を伴なうが、一貫した食品が無く毎日の食生活に利用され、新しい食生活が始まる。

一方、個々の人々については、宗教や家族制度や慣行が要因になることが多い。例えば、家父長制度の影響は東アフリカでも見られる。「Uchu wa Mzee Mikididi」と(The craving of Mikididi)の名の言葉がある。その注目は次のというものである。祭りの日、大勢の子供達が集会したMikididi老人は、子供達には御飯を食べさせず、うまい鶏肉

Table 5. Nutritive values of soy bean products; crude flour, full fat flour (pre cooked) and protein concentrate (Bontrae C).

<table>
<thead>
<tr>
<th>100g foods</th>
<th>protein (N×5.71) g</th>
<th>fat g</th>
<th>NSI</th>
<th>water absorption</th>
<th>moisture g</th>
</tr>
</thead>
<tbody>
<tr>
<td>crude flour</td>
<td>35.2</td>
<td>15.5</td>
<td>55</td>
<td>230</td>
<td>9.6</td>
</tr>
<tr>
<td>full fat flour</td>
<td>45.2</td>
<td>20.5</td>
<td>7</td>
<td>350</td>
<td>7.6</td>
</tr>
<tr>
<td>protein concentrate</td>
<td>43.2</td>
<td>1.1</td>
<td>13'</td>
<td>350</td>
<td>7.4</td>
</tr>
</tbody>
</table>

NSI: nitrogen solubility index (NSI ground sample)

— 56 —
<table>
<thead>
<tr>
<th>Siku (Day)</th>
<th>Asubuhi (Breakfast)</th>
<th>Mchana (Lunch)</th>
<th>Jion (Supper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ya kwanza (1st)</td>
<td>Papai (Pawpaw) Uji wa wimbi wenye maziwa (Uji from finger millets with milk)</td>
<td>Maharagwe na mahindi (Maize with beans) Nyanya mbichi (Fresh tomatoes)</td>
<td>Ugali au Chapati (Ugali or Chapati) Mchuizi wa dengu (Lentil soup) Mapera (Guava)</td>
</tr>
<tr>
<td>Ya pili (2nd)</td>
<td>Viazi vitamu vilivypikwa na karanga (Sweet potatoes cooked with ground nuts) Mayai (Eggs) Chai (Tea) Tunda (Fruit)</td>
<td>Ugali (Ugali) Mchuizi wa nyama (Meat soup) Karoti mbichi (Fresh carrot)</td>
<td>Mchanganyiko wa mboga; viazi, maharagwe, karoti, vitunguu na nyanya (Mixture of vegetables; potatoes, beans, carrot, onions and tomatoes) Nanasi (Pineapple)</td>
</tr>
<tr>
<td>Ya tatu (3rd)</td>
<td>Ndizi (Banana) Maandazi (Fried cake) Chai (Tea)</td>
<td>Ugali wa maziwa laa majani ya kunde (Ugali with yogurt and cowpea leaves)</td>
<td>Ndizi zilizopikwa na njegere na mhichia (Bananas cooked with green peas and spinach) Maziwa (Milk) Saladi ya matunda (Fruit salad)</td>
</tr>
<tr>
<td>Ya nne (4th)</td>
<td>Papai (Pawpaw) Uji wa mahindi ulioongezewa maziwa (Uji from maize with milk) Mayai (Eggs)</td>
<td>Muhogo (Cassava) Mboga za kiasili zilizopikwa na simsim (Traditional stew(Mboga) cooked with sesame) Nyanya na karoti mbichi (Fresh tomatoes and carrot) Mapera (Guava)</td>
<td>Ugali na samaki (Ugali with fish) Nyanya na vitunguu (Tomatoes and onions)</td>
</tr>
<tr>
<td>Ya tano (5th)</td>
<td>Maji ya ndimu ama limau (Lime or lemon juice) Uji ulioongezewa yai (Uji with egg) Chai na maziwa (Tea with milk)</td>
<td>Wali na maharagwe (Cooked rice with beans) Mboga zo zote za jamani (Various vegetables) Machungwa (Oranges)</td>
<td>Nyama ya kuchoma (Grilled meat) Ugali (Ugali) Vitunguu na nyanya mbichi (Onions and fresh tomatoes) Ndizi mbivu (Ripe banana)</td>
</tr>
</tbody>
</table>
は独り占めして食べる。老人は、これはお前達の祭りだ、と言いつつながら結局鶏肉ばかりを食べる。老人が飲一杯になった時に、子供達は残った鶏肉を食べることに決めた。子供達の体作りの為に、蛋白質が必要であるのに対して、老人にはほとんど必要ではない。従って、東アフリカ風の競争的な食べ方だが、競争と習慣という名で次代を担う子供達の体作りを阻害してはならないし、とこの話の最後は結ばれている。栄養豊富な食べ物を父や兄弟に与えて、子供達や姉妹が残り物を食べるという習慣について、考える場を作ることが大事であると指導書114にも書かれている。

また、社会経済的要因の例として、[Tenge mkwapua nyama]115 (Tenge snatches meat) の話をあげることが出来る。肉好きな Tenge は自分の収入以上の肉を望む。その為、妻の分も食べてしまう。もし肉がなければイライラして暴力を振る。彼のように肉を飲めるよう食物を分割する者に満たさせるその肉を与えるのも問題があるが、自分の収入を高めるように努力をしなければならない、との話は結ばれている。経済的問題は万国共通であるが、最近のケニアでは特に大きな比重を持つ要因の一つになっている。

東アフリカでも都市化は急速に進んでいる。都市のレストランには外国料理が進出し、又、個々の食生活では、うじのかわりに他の飲物を飲むようになっていると言う。家庭の味である伝統的料理の良さを認識し、出来るだけ多く、出来るだけ長く保持していく事を試みなければならないと指導書114は述べている。

以上のように、種々の要因によって食生活は決定される。しかし、一度身につけた習慣の変更は容易ではない。けれども、食生活形成に影響を与える要因は、数々あり、食生活を変化させる要因でもある。その意味から、教育や食生活方法の工夫は重要で、他とゆくやくであっても、人々を受け入れられるように確実に改善してゆく方針を持つ事が大事である。

指導書では、毎日の食事計画を立てた時、次の五つの点、つまり、栄養素、食欲をそろえる、テクスチャー、多様性、家族内一人一人の要求度118により注意を払うように命じている。本稿では触れなかったが、乳幼児の栄養問題は、最も重要なものの一つである。いずれも機会をとらえて考えてみたいと思う。

最後に、食事の模範例や摂取量の例の中から、日常生活で使用されている料理を組み合わせて考えられた家族の五日間の食事計画表119を、一例として表6に記した。

本稿を書くにあたって、援助協力をお願いした遠方の方々に感謝の意を表します。特に、ケニアから京大大学院に留学中の G.C. Mwangi 氏と、タンザニアから鹿児島大学大学院に留学中の K. H. H. Shemsanga 氏には、一方ならず御世話となりました。深く感謝致します。

引用文献
1) 豊川裕之：講座現代と健康4，食生活と健康； p.272-290，317-318，大修館書店（1977）
2) FAO/WHO 編，井上訳：エネルギー蛋白質の必要量； p.18-21，医歯薬出版（1974）
3) 食生活研究会：これからの食生活； p.11-13，184-188，農林統計協会（1977）
4) 日本生活学会：生活学第2冊； p.148-163，ドメス出版（1975）
5) 豊川裕之：臨床栄養； 51，No.6，669-678（1977）
6) 吉川・西丸：日本食品工業会誌； 19，No.4，165-179（1972）
7) A.K. Smith and S.J. Circle 著，渡辺訳：大豆蛋白質； p.231-275，筑摩社（1974）
8) 石毛直道：世界の食事文化； p.137-141，148-177，207-221，ドメス出版（1974）
9) 朝日新聞社：探検と冒険1； p.91-171（1972）
10) J. van der Meer：Tanzanian food with traditional and new recipes； p.1-4，13-16，44-57，133-135，FAO（1975）
12) Ministry of Agriculture Training Division（Kenya）：Learning to cook the 4K way； p.43-46，Agricultural Information Centre.
13) S. Lesberg：The art of African cooking； p.129-131，154-162，Dell pub. co. Inc.（1971）
14) M. Omindie：African Cookery Book； p.5-12，62-64，71-74，Heinemann Educational Books（1975）
16) FAO and Government of Kenya：Nuru ya nyumbani； p.3-46，129-175，EALB（1974）
17) S. Hyder：Recipes from the Kenya Coast； p.7-11，43-50，Longman（1976）
18) アフリカを学ぶ雑誌：No.3，p.12-25，理論社（1971）
19) S. M. Barghout：Reaching rural families in East Africa； FAO（1973）
20) A. M. Altschul 著，桙井訳：蛋白質； p.168-181，光琳書院（1967）
21) 岩佐俊吉：熱帯の有用作物； p.514-535，農林省熱帯農業研究センター（1975）
22) 中尾佐助：料理の起源；p. 115-126，日本放送出版協会（1974）
23) 柳本光美：ヒマラヤの村；p. 34, 219, 259, 261，社会思想社（1977）
24) 穂波満：大豆食品；p. 208-217，光琳書院（1971）
28) FAO 編，大磚敬雄訳：食品のアミノ酸含量とその蛋白生物価；p. 76-80，第一出版（1975）
29) 吉田昌夫：アフリカ現代史 I. 東アフリカ；p. 247-249，山川出版（1978）
30) J. K. Nyerere: Ujamaa ni imani 1; East African Publishing House (EAPH) (1973)
32) UNICEF: Kilimo na UNICEF, Soya ni chakula bora kwa kujenga mwili; Dar es Salaam
35) 青木 泰: 講理科学; 6, No. 2, 38-46 (1973)
36) 大井ら：未発表
39) 内野昌浩：人口変動と食生活；p. 1-24，第一出版（1977）
41) Tanganyika African National Union (TANU): Darubini 3, Ujingga wa mwafrika; p. 11-13, EAPH (1975)
42) TANU: Darubini 4, Kazi ni uhai; p. 15-18, EAPH (1974)